Foundations of Math

CHAPTER 1 - PART 1

NAME:

TABLE OF CONTENTS

Notes #1	Properties of Real Numb.	Pg. 1-2
Notes #2	Order of Operations	Pg. 3
Notes #2.5	Basic Substitution	Pg. 4
Notes #3	Rational & Irrational Numb.	Pg. 5-6
Notes #4	One-Step Equations	Pg. 7-8
Notes #5	Two-Step Equations	Pg. 9-10
Notes #6	Combining Like Terms	Pg. 11
Notes #6.5	Distributing	Pg. 12
Notes #7	Multi-Step Equations	Pg. 13-14
Notes #8	Variables on Both Sides	Pg. 15-16
Notes #9	Decimals & Fractions	Pg. 17-18
Notes #10	One-Step Inequalities	Pg. 19-20
Notes #11	Two-Step Inequalities	Pg. 21-22
HW #11	Homework #11	Pg. 23
HW #10	Homework #10	Pg. 25
HW #9	Homework #9	Pg. 27
HW #8	Homework #8	Pg. 29
HW #7	Homework #7	Pg. 31
HW #6	Homework #6	Pg. 33
HW #5	Homework #5	Pg. 35
HW #4	Homework #4	Pg. 37
HW #3	Homework #3	Pg. 39
HW #2	Homework #2	Pg. 41

	Property	Example
1.	Commutative Property of Addition	
2.	Commutative Property of Multiplication	
3.	Associative Property of Addition	
4.	Associative Property of Multiplication	
5.	Distributive Property	
6.	Additive Identity Property	
7.	Multiplicative Identity Property	
8.	Additive Inverse Property	
9.	Multiplicative Inverse Property	
10.	Zero Property	
11.	Closure Property	

Identify the property used in the following examples:

1) $t + 0 = t$	
2) $1m = 1$	
3) $(-3+4)+5=-3+(4+5)$	
4) $np = pn$	
5) $\frac{4}{3} * \frac{3}{4} = 1$	
6) $(3 * 8)4 = 3(8 * 4)$	
7) $p + q = q + p$	
8) 2 + 6 = 8	
9) $a * 0 = 0$	
10) $7 + -7 = 0$	

11) 2(y-7) = 2 * y - 2 * 7

<u>ලෝගංගේලාගංගලාගංගලාගංගලාගංගලාගෙලාගලාගලාගලාගලාගලා</u>

Commutative refers to _____

Associative refers to ______

1) $(4^2 - 2 + 2) - 8 - 6$

5) $(2 \div 1^2 + 2) + 1$

2)	(1 - 6)) + 2	6)	5 ² * ((8 - 8)) – 6
_/	(1 0	,	= /		·	, -

3)
$$(5+7+2)$$
 7) $(7*2)-6$

4) (2+8) * 7 **8)** $9 * (9 \div 3^2) + 9 + 4$

BASIC SUBSTITUTION

What does substitution mean?

What are some examples of "substitution" in the real world?

Let's try it!

Evaluate each using the values given.

ional, or Irrationa

Rational numbers

ex)

Irrational numbers

ex)
Rational Numbers can be divided into different categories:

Natural Numbers=

Whole Numbers=

Integers=

Name the set(s) of numbers to which each number belongs:

2.8	38	$\frac{-17}{31}$	0	$\sqrt{10}$	-46	$\frac{2}{3}$	3. 3	-0.002	$12\frac{1}{2}$	7.26841973
-----	----	------------------	---	-------------	-----	---------------	-----------------	--------	-----------------	------------

Natural:

Whole:

Integers:

Rational:

Irrational:

Which of the following is irrational? $\frac{6}{11}$, $\frac{2}{5}$, $\sqrt{10}$

What is a counterexample?

Is each statement true or false? If the statement is false, give a counterexample.

1) Every whole number is an integer.

3) Every whole number is a natural number.

2) Every integer is a whole number.

4) Every natural number is a rational number.

5) The product of two rational numbers is rational.

6) The sum of two irrationals is rational.

Name:

SOLVING ONE STEP EQUATIONS

What is so special about an equation?

Something without an equal sign is called an _____

An equation must always remain ______.

What you do to one side of the equation, ______

If you subtract the same number from each side of the equation, the two sides remain EQUAL! **If you add the same number from each side of the equation, the two sides remain EQUAL!**

How do you undo addition? (In other words, what is the opposite of addition) ______

How do you undo subtraction? (In other words, what is the opposite of subtraction) _____

<u>example 2</u>

Solve b - 28 = 22. Solve & identify the property used.

<u>example 3</u>

Solve 8.6 = n + 7.1. Solve & identify the property.

 $\frac{EXAMPLE \ 4}{Solve \ 15 = -12 + t}$. Solve & identify the property.

WHEN WE <u>SOLVE</u>, WE ARE <u>ISOLATING</u> THE VARIABLE (IN OTHER WORDS, WE ARE TRYING TO GET THE LETTER <u>BY ITSELF</u>)

EXAMPLE 6

Solve $\frac{x}{2} = 14$. Solve & identify the property used.

<u>EXAMPLE 7</u>

Solve -4y = 60. Solve & identify the property.

EXAMPLE 8 Solve $f \div 3 = 4$. Solve & identify the property.

You try it! Solve and identify the property used.

3)
$$x - 8 = -3$$
 1) $-\frac{1}{4}x = 5$

4) 3y = 15 2) 6 + x = 5

SOLVING TWO STEP EQUATIONS

Review: Solve, check and identify the property.

1. -3 + x = -18

2.
$$\frac{p}{3} = 8$$

Two-step equations - equations that require you to perform two operations in order to

1) 5x + 14 = 74 **3)** -9 - 4x = 21

2)
$$-3 + \frac{p}{4} = 19$$
 4) $\frac{k}{5} - 6 = 3$

REMEMBER: UNDO ADDITION/SUBTRACTION FIRST, AND MULTIPLICATION/DIVISION LAST.

5)
$$\frac{s}{6} - 5 = -8$$
 7) $9 + \frac{k}{5} = 6$

6) 5y + 16 = 51

8) -12 + 5x = 28

REMEMBER: UNDO ADDITION/SUBTRACTION FIRST, AND MULTIPLICATION/DIVISION LAST.

Combining Like Terms

term:

coefficient:		
Important: Whenever a variable does not have a	it is always an imaginary	!
examples of terms:		

like terms:

- terms with the same ______ raised to the same ______
- _____ do not have to be the same

like terms	3x and $2x$	w and $\frac{w}{7}$	5 and 1.4
unlike terms	$3x^2$ and $2x$	r and $rac{w}{7}$	3.2 and x

combining like terms: all you have to do is ______ the _____!

NOTHING happens to the ______. It always STAYS THE ______.

What is 2 + 3 ? Answer:_____ non-algebra example:

algebra example:

What is 2x + 3x? Answer: _____

	1) 14 <i>b</i> - 8 <i>b</i>	2) $2x^3 + 9x^3$	3) $20x - 2x + 4x$
_; +			
 ת			
α +			
•			

NI	Э	r	n		٠
1 1	a	I.		c	٠

Name:								Notes #6.5
)ist	ribu	ting		
Recal	l l : The	distributive pr	operty is all ab	out			_·	
	You	<u>distribute</u> whe	en a term is dire	ectly in	front of or b	ehind a set	of	·
Т	he pa	rentheses will I	nave terms insi	de that	are being _		or	·
exam	ples		6(<i>x</i> + 2)	and	(k - 3)7			
nOn-6	exam	ples:	6 + (<i>x</i> + 2)	and	(<i>k</i> – 3) –	- 7		
The te	erm or	n the	of the pa	renthes	ses needs to	be	t	o every term on the inside.
step:	s +0 a	distRibute:						
1)	draw	a "	" from	the ter	m on the ou	tside of the	() to the ⁻	first term inside.
2)	Multi	ply the two ter	ms that you ju	st conne	ected and w	rite down yo	our answe	؛r.
3)	Draw	a "	" from	the ter	m on the ou	tside of the	() to the	next term inside.
4)	Multi	ple the two ter	ms that you ju	st conn	ected and w	rite down yo	our answe	؛۲.
5)	Repe	at until the teri	m on the outsid	de has b	een multipl	ied to each t	term on tl	ie inside.
6) 	Comt	oine like terms	if necessary.					
/)	Circle	your answer.						
Examp	le:	1) $-8(x - x)$	+ 3) – 15			2)	-2(x-3)	(3) + 7x - 9
	1)	5(9 + <i>w</i>)		2)	$\overline{\partial}(7+p)$		3)	4(5 <i>j</i> – 3)
) i†!								
try	4)	5(6k + 10) -	- 15k	5) 2	2(3b+2) -	2 <i>b</i>	6)	3(4c+2) - 6 - 11c

solving multi-step Equations

Review:

1) 4y + 5 = -31

2) -36 + 9n = -27

A multi-step equation is a	n equation that requires			_ in order to solve.
Typically you will have to ι	Indo more than just	and _		You may
encounter problems where	e you have to	like	or	
STEPS FOR SOLVING MULT *Note: these steps can be	-STEP EQUATIONS: followed for solving one and	d two step equation	ons also*	···-··
Step 1: Draw a	down from the _			·
Step 2:	if needed.			
Step 3: Combine	·			
Step 4:	the variable.			
Step 5: Undo any	or		·	
Step 6: Undo any		or		·
Step 7:	each step (which means _		the prop	erty that you used).

Let's try it!

1) $2n + 3n + 7 = -41$	2) $3h - 5h + 11 = 17$
2) $2(m+1)$ $4-16$	A) $2(t - 12) = 27$
(3) 2(m + 1) - 4 = 10	4) $3(l - 12) = 2/$
3) $2(m+1) - 4 = 10$	4) $3(t-12) = 27$
3) $2(m+1) - 4 = 10$	4) $3(t-12) = 27$
3) $2(m+1) - 4 = 10$	4) $3(t-12) = 27$
3) $2(m+1) - 4 = 10$	4) $3(t-12) = 27$
3) $2(m+1) - 4 = 10$	4) $3(t-12) = 27$

5) $8 + 2k - k = -3$	6) $6a - 2a = -36$
7) $3c - 8c + 7 = -18$	8) $-14 - 7g + 5g = 8$
	1
9) $5(3x+12) = -15$	$10)\frac{1}{2}(12g-8) = 26$
11) $2d - 6 + 3d = 14$	12) $5(b+4) - 6b = -24$

Equations with Variables on Both Sides

Review:

1) 2(3y + 4) = 20

2) -12 + 6b - 2b = -8

Sometimes we will encounte	er problems that have a	on both sides of the equation.		
Steps for Variab	les on Both Sides	:		
Step 1: Draw a d	own from the equal sign to	separate the two sides.		
Step 2:	if needed.			
Step 3: Combine	on e	ach side separately if needed.		
Step 4:	the terms with the variable			
Step 5: Move the	variable to the oth	ner side by doing the	·	
Step 5: Undo any	or			
Step 6: Undo any		or	·	
Step 7:	each step.			
Let's try it!	······	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1) Solve $6y + 21 = 9y$		3) Solve $2(c-6) = 9c + 2$	2	

2) Solve 4x + 2x - 24 = 8x

5) 9x + 4 = 12x - 6x - 11

7) 2(k+1) = 3k+5

N	h	n	م	۰.
IN	a		IC	

Equati⊙ns with de	cimals & fracti⊛ns
Review: Solve the following equations and check:	
1) $2w - 6 = 4w + 8$	2) $r + 3 = 5r + 19$
When an equation has	and, not much changes!
USE YOUR CALCUL	ATOMIN IT IS YOUR MENN
USE JUUI CALCULI	
Convert all fractions	s to decimals first if you can.
If a fraction is attached to your variable (and it	can't be converted to a decimal),
both sides of the equation by the	to get rid of it. (!)
Let's try it!	
1) $0.02y + 0.7 - 0.8$. 2 . 1 5
1, 0.024 + 0.7 = 0.0	3) $\frac{1}{3}x + \frac{1}{2} = \frac{1}{6}$
2) $0.06y + 200 = 0.03y + 350$	4) $\frac{1}{4}n + 5 = 5\frac{1}{2}$

Your turn!

5)
$$0.35x + 0.6 = 0.1x + 1$$

7) $\frac{1}{16}x + \frac{1}{4} = \frac{1}{2}$

6) 2(x-3) = 1.2 - x

8) 3.3 - x = 3(x - 1.7)

Name:

(SHOULD BE) REVIEW

Solve each inequality and graph it on a number line. Explain the solution.

1)
$$b + 7 \le -4$$
 2) $-5 < n - 3$

Name:

Solving Two-Step Inequalities

Consider the inequality 4 > 1.

- Complete each statement on the right by choosing < or >.
- **2.** What happens to the inequality symbol when you multiply each side by a positive number?
- **3.** What happens to the inequality sign when you multiply each side by a negative number?

4 · 3 1· 3
4 · 2 1· 2
4 · 1 1· 1
4 · -1 1 · -1
4 · -2 1· -2
4 · -3 1 · -3

Solve and Compare:

1.) 3x > 9 2.) -3x > 9

If you multiply or divide each side of an inequality by a _______number, the inequality stays in the same direction. If you multiply or divide each side of an inequality by a _______number, the inequality <u>flips directions</u>.

Solve, graph, and explain the solution

1) 2k + 4 < 6

4)
$$-\frac{x}{3}+2 \ge 1$$

Name: _____

EXAMPLES: Solve and graph and explain the solution.

1)
$$3g + 9 < 18$$

2)
$$\frac{k}{-2} + 5 \le -4$$

What numbers are a part of the solution set? Circle all that apply. (there can be more than one)

a) 6 b) -3 c) -4 d) 4
4.)
$$\frac{x}{3} - 1 \le 2$$

	a) 3	b) 9	c) 4	d) 1
--	------	------	------	------

Solve each problem and JUSTIFY each step.

#1)
$$2(x+2) = \frac{9}{2}$$
 #2) $0.3n + 4.1 = -0.6n - 1.2$

#3)
$$\frac{1}{3} \left(\frac{3}{5} w + \frac{12}{10} \right) = \frac{4}{5} w + \frac{1}{10}$$

#4) 0.4(m+0.7) = 1.5

Solve the equation and justify each step.

1.
$$5 + 4x = x + 8$$

2.
$$3z + 7 = 2(z + 5)$$

3. -2(6 - 2m) = 3m - 8 + 5m

4. 3(x-2) - 2x = 4x + 9

Name: _____

Homework #7

Solve the following equations and identify the properties used.

1) 3(d+2) = 6 2) 26 = 2(m+10)

3.) 18 = 2m + 6 - 5m

4.) 2(b-3) - 4b = 4

Homework #6

Use the Distributive Property Name: & Combine Like Terms 1.) 3-3(x-2) 2.) -(1-5n) - 7n3.) 8+7(7n-4) 4.) 4x+5(3x-3)5.) 5-2(8x+4)6.) 1 - 8x- 5x 7.) 7 + 6 x+ 9x+ 9 8.) -3 + 8 x + 2 9.) 5 - 8n- 4n 10.) 9 + 3x + 1 - 2x

Solve the following 2 step equations and CHECK! Then identify the properties used.

1.) 2c + 5 = 35 2.) $\frac{p}{4} + 3 = 15$

3.)
$$34 = 14n - 8$$
 4.) $5y + 16 = 51$

4.)
$$-\frac{m}{9} + 7 = 3$$
 6.) $\frac{n}{4} - 3 = 6$

7.)
$$-3 = -3k + 6$$

8.) $-9 = -\frac{s}{12} + 5$

Name:

Solving one-step equations You must **show vour work** to get credit. Identify the property you used.

1)
$$y+9=23$$
 2) $\frac{x}{4}=16$

3) - 78 + z = 100

4) - 8c = 96

5) 3n = 39 6) 10 = a - 15

7.) 48 + b = 56 8.) $\frac{1}{5}x = 4$

1	.) Determ	ine the set	or sets the	e following	numbers be	long to:	
	-3.2	-35	7	0	$\sqrt{8}$	$\frac{3}{5}$.23974
Natu	ıral:						
Who	le:						
Inte	ger:						
Rati	onal:						
Irra	tional:						

2.) Which statement is not always true?

- (1) The product of two irrational numbers is irrational.
- (2) The product of two rational numbers is rational.
- (3) The sum of two rational numbers is rational.
- (4) The sum of a rational number and an irrational number is irrational.

.

3.) Given:
$$L = \sqrt{2}$$

 $M = 3\sqrt{3}$
 $N = \sqrt{16}$
 $P = \sqrt{9}$

Which expression results in a rational number?

(1) L + M (3) N + P(2) M + N (4) P + L Identify the property that each example illustrates.

1 Which property is illustrated by the equation ax + ay = a(x + y)?

2 Which property of real numbers is illustrated by the equation $-\sqrt{3} + \sqrt{3} = 0$?

- 3 Which property of real numbers is illustrated by the equation 52 + (27 + 36) = (52 + 27) + 36?
- 4 If M and A represent integers, M + A = A + M is an example of which property?

5 Which property is illustrated by the equation $\frac{3}{2}x + 0 = \frac{3}{2}x$?

- 6 Which property is illustrated by the equation 6 + (4 + x) = 6 + (x + 4)?
- 7 What is the multiplicative inverse of $\frac{3}{4}$?
- 8. Under which operation is the set of odd integers closed?
 - 1) addition
 - 2) subtraction
 - 3) multiplication
 - 4) division