

TABLE OF CONTENTS

Properatiee of Real Numbers

	Property	Example
	Commutative Property of Addition	
1.		
	Commutative Property of Multiplication	
2.		
	Associative Property of Addition	
3.		
	Associative Property of Multiplication	
4.		
	Distributive Property	
5.		
	Additive Identity Property	
6.		
	Multiplicative Identity Property	
7.		
	Additive Inverse Property	
8.		
	Multiplicative Inverse Property	
9.		
	Zero Property	
10.		
	Closure Property	
11.		

Identify the property used in the following examples:

1) $t+0=t$ \qquad
2) $1 m=1$
3) $(-3+4)+5=-3+(4+5)$ \qquad
4) $n p=p n$
5) $\frac{4}{3} * \frac{3}{4}=1$
6) $(3 * 8) 4=3(8 * 4)$
7) $p+q=q+p$ \qquad
8) $2+6=8$ \qquad
9) $a * 0=0$ \qquad
10) $7+-7=0$
11) $2(y-7)=2 * y-2 * 7$

REMEMBER

Commutative refers to \qquad
Associative refers to \qquad

1) $\left(4^{2}-2+2\right)-8-6$
2) $\left(2 \div 1^{2}+2\right)+1$
3) $(1-6)+2$
4) $5^{2} *(8-8)-6$
5) $(5+7+2)$
6) $(7 * 2)-6$
7) $(2+8) * 7$
8) $9 *\left(9 \div 3^{2}\right)+9+4$

BASIC SUBSTITUTION

What does substitution mean?

What are some examples of "substitution" in the real world?

In math, we substitute by replacing \qquad with \qquad .

Let's try it!

Evaluate each using the values given.

1) $y \div 2+x$; for $x=1$ and $y=2$
2) $p^{2}+m$; for $m=1$ and $p=5$
3) $a-5-b$; for $a=10$ and $b=4$
4) $m+p \div 5$; for $m=1$ and $p=15$

5) $\left(6+h^{2}-j\right) \div 2$; for $h=6$ and $j=4$
6) $z(x+y)$; for $x=6, y=8$, and $z=6$
7) $p^{2} m \div 4$; for $m=4$ and $p=7$
8) $y-\left(z+z^{\wedge} 2\right)$; for $y=10$ and $z=2$

Name: \qquad
Rational numbers- \qquad
\qquad
ex)
Irrational numbers- \qquad
\qquad
ex)
Rational Numbers can be divided into different categories:
Natural Numbers=

Whole Numbers=

Integers=
 Name the sets) of numbers to which each number belongs:

2.8	38	$\frac{-17}{31}$	0	$\sqrt{10}$	-46	$\frac{2}{3}$	$3 . \overline{3}$	-0.002	$12 \frac{1}{2}$	$7.26841973 \ldots$

Natural:

Whole:

Integers:

Rational:

Irrational:

Which of the following is irrational? $\frac{6}{11}, \frac{2}{5}, \sqrt{10}$

What is a counterexample?

Is each statement true or false? If the statement is false, give a counterexample.

1) Every whole number is an integer.
2) Every integer is a whole number.
3) Every whole number is a natural number.
4) Every natural number is a rational number.
5) The product of two rational numbers is rational.
6) The sum of two irrationals is rational.

Name:

sOLVING ONE STEP EQUATIONS

What is so special about an equation?
Something without an equal sign is called an \qquad .

An equation must always remain \qquad .

What you do to one side of the equation, \qquad .
If you subtract the same number from each side of the equation, the two sides remain EQUAL!
If you add the same number from each side of the equation, the two sides remain EQUAL!
How do you undo addition? (In other words, what is the opposite of addition) \qquad
How do you undo subtraction? (In other words, what is the opposite of subtraction) \qquad

EXAMPLE

Solve: $x+5=11$. Solve \& identify the property used.

EXAMPLE 2

Solve $b-28=22$. Solve \& identify the property used.

EXAMPLE 3

Solve $8.6=n+7.1$. Solve \& identify the property.

EXAMPLE 4

Solve $15=-12+t$. Solve \& identify the property.

How do you undo multiplication? (In other words, what is the opposite of multiplication) \qquad
How do you undo division? (In other words, what is the opposite of division)

EXAMPLE 5

Solve: $2 w=6$. Solve \& identify the property used.

EXAMPLE 6
Solve $\frac{x}{2}=14$. Solve \& identify the property used.

EXAMPLE 7

Solve $-4 y=60$. Solve \& identify the property.

EXAMPLE 8
Solve $f \div 3=4$. Solve \& identify the property.

You try it! Solve and identify the property used.
3) $x-8=-3$

1) $-\frac{1}{4} x=5$
2) $3 y=15$
3) $6+x=5$

SOLVING TWO STEP EQUATIONS

Review: Solve, check and identify the property.

1. $-3+x=-18$
2. $\frac{p}{3}=8$

Two-step equations- equations that require you to perform two operations in order to

STEPS TO SOLVE TWO STEP EQUATIONS:

1) Draw a line down from \qquad
2) Circle the \qquad .
3) Move the term that is \qquad from the circled variable.

To do this, undo it by performing the \qquad .
4) Move (undo) the term that is \qquad the variable by performing the \qquad .
ALMOST ALWAYS YOU WILL HAVE TO: IT UNDO ADDITION/SUBTRACTION AND $Z^{\text {ND }}$ UNDO MULTIPLICATION/DIVISION.

Examples: Solve \& identify each property that you use.

1) $5 x+14=74$
2) $-9-4 x=21$
3) $-3+\frac{p}{4}=19$
4) $\frac{k}{5}-6=3$
5) $\frac{s}{6}-5=-8$
6) $9+\frac{k}{5}=6$
7) $5 y+16=51$
8) $-12+5 x=28$

Combitatag Like Terms

term: \qquad
coefficient: \qquad

ImPORtant: Whenever a variable does not have a \qquad it is always an imaginary \qquad examples of terms:
like terms:

- terms with the same \qquad raised to the same \qquad
- \qquad do not have to be the same

like terms	$3 x$ and $2 x$	w and $\frac{w}{7}$	5 and 1.4
unlike terms	$3 x^{2}$ and $2 x$	r and $\frac{w}{7}$	3.2 and x

combining like terms: all you have to do is \qquad the \qquad !

NOTHING happens to the \qquad . It always STAYS THE \qquad .
non-algebra example:

Answer: \qquad algebRa example:

What is $2 x+3 x$? Answer: \qquad

1) $14 b-8 b$	2) $2 x^{3}+9 x^{3}$	3) $20 x-2 x+4 x$
$\underset{\sim}{ \pm} \mathbf{\sim}$		

Recall: The distributive property is all about \qquad .

You distribute when a term is directly in front of or behind a set of \qquad .

The parentheses will have terms inside that are being \qquad or \qquad -
examples:
$6(x+2) \quad$ and $\quad(k-3) 7$
non-examples:
$6+(x+2) \quad$ and $\quad(k-3)-7$

The term on the \qquad of the parentheses needs to be \qquad to every term on the inside.

steps to distribute:

1) draw a" \qquad " from the term on the outside of the () to the first term inside.
2) Multiply the two terms that you just connected and write down your answer.
3) Draw a" \qquad " from the term on the outside of the () to the next term inside.
4) Multiple the two terms that you just connected and write down your answer.
5) Repeat until the term on the outside has been multiplied to each term on the inside.
6) Combine like terms if necessary.
7) Circle your answer.
Example:
8) $\quad-8(x+3)-15$
9) $-2(x-3)+7 x-9$

1)	$5(9+w)$	2)	$9(7+p)$	3)	$4(5 j-3)$
$\boldsymbol{\pm}$ -					
$\boldsymbol{\sim}$ (4)	$5(6 k+10)-15 k$	5)	$2(3 b+2)-2 b$	6)	$3(4 c+2)-6-11 c$

 Review:

1) $4 y+5=-31$
2) $-36+9 n=-27$

A multi-step equation is an equation that requires \qquad
\qquad in order to solve.

Typically you will have to undo more than just \qquad and \qquad . You may encounter problems where you have to \qquad like \qquad or \qquad .

:SITES FOR SOLUTNG MULII-SIEP Eeuations:

Note: these steps can be followed for solving one and two step equations also
Step 1: Draw a \qquad down from the \qquad .

- Step 2: \qquad if needed.
| Step 3: Combine \qquad .
. Step 4: \qquad the variable.
| Step 5: Undo any \qquad or \qquad .

Step 6: Undo any \qquad or \qquad .

Step 7: \qquad each step (which means \qquad the property that you used).

Let's try it!

1) $2 n+3 n+7=-41$	2) $3 h-5 h+11=17$
3) $2(m+1)-4=16$	4) $3(t-12)=27$

5) $8+2 k-k=-3$	6) $6 a-2 a=-36$
7) $3 c-8 c+7=-18$	8) $-14-7 g+5 g=8$

Equations with Variables on Both Sides

 Review:1) $2(3 y+4)=20$
2) $-12+6 b-2 b=-8$

Sometimes we will encounter problems that have a \qquad on both sides of the equation.

Steps for Variables on Both Sides:

Step 1: Draw a \qquad down from the equal sign to separate the two sides.

Step 2: \qquad if needed.

Step 3: Combine \qquad
\qquad on each side separately if needed.

Step 4: \qquad the terms with the variable.

Step 5: Move the \qquad variable to the other side by doing the \qquad .

Step 5: Undo any \qquad or \qquad .

Step 6: Undo any \qquad or \qquad .

Step 7: \qquad each step.
 Let's try it!

1) Solve $6 y+21=9 y$
2) Solve $2(c-6)=9 c+2$
3) Solve $4 x+2 x-24=8 x$
4) $5 a-12=3 a+8$
5) $4 b-13=7 b-28$
6) $9 x+4=12 x-6 x-11$
7) $2(k+1)=3 k+5$

Equations with decimals \& fractions

Review: Solve the following equations and check:

1) $2 w-6=4 w+8$
2) $r+3=5 r+19$

When an equation has \qquad and \qquad not much changes!

UJE YOUT CALCULATOR!!! iT if yOUR fritNal!

If a fraction is attached to your variable (and it can't be converted to a decimal), \qquad
both sides of the equation by the \qquad to get rid of it. (!)

Let's try it!

1) $0.02 x+0.7=0.8$
2) $\frac{2}{3} x+\frac{1}{2}=\frac{5}{6}$
3) $0.06 y+200=0.03 y+350$
4) $\frac{1}{4} n+5=5 \frac{1}{2}$

Your turn!

5) $0.35 x+0.6=0.1 x+1$
6) $2(x-3)=1.2-x$
7) $3.3-x=3(x-1.7)$

Name:
solving one-step inequalifies
(SHOULD BE) REVIEW

$>$	$<$	\leq	\geq

2) $3 \geq d$

Just like with equations, our goal is to \qquad the variable.

Examples:

Let's solve, number line and explain each of the following inequalities.

1) $x+3>10$
2) $-12 \geq 7+x$

3) $6<2 k$

4) $\frac{x}{2} \geq 4$

Solve each inequality and graph it on a number line. Explain the solution.

1) $b+7 \leq-4$
2) $-5<n-3$

3) $-2 \leq \frac{x}{4}$
4) $3 x>-18$

5) $-12+c<14$

6) $\frac{x}{3} \geq 5$

Solving Two-Step Inequalities

Consider the inequality $4>1$.

1. Complete each statement on the right by choosing < or >.
2. What happens to the inequality symbol when you multiply each side by a positive number?
3. What happens to the inequality sign when you multiply each side by a negative number?

| $4 \cdot 3 \ldots 1 \cdot 3$ |
| :---: | :---: |
| $4 \cdot 2 \ldots 1 \cdot 2$ |
| $4 \cdot 1 \ldots 1 \cdot 1$ |
| $4 \cdot-1 \ldots 1 \cdot-1$ |
| $4 \cdot-2 \ldots 1 \cdot-2$ |
| $4 \cdot-3 \ldots 1 \cdot-3$ |

Solve and Compare:
1.) $3 x>9$
2.) $-3 x>9$

Solve, graph, and explain the solution

1) $2 k+4<6$

2) $-3 m-6<9$

3) $4 \leq \frac{x}{2}-3$
4) $-\frac{x}{3}+2 \geq 1$

Name:

EXAMPLES: Solve and graph and explain the solution.

1) $3 g+9<18$
2) $\frac{k}{-2}+5 \leq-4$

What numbers are a part of the solution set? Circle all that apply. (there can be more than one)
3.) $-5 c+9<-11$
a) 6
b) -3
c) -4
d) 4
4.) $\frac{x}{3}-1 \leq 2$
a) 3
b) 9
c) 4
d) 10
\qquad

Solve the following inequalities. Graph and explain the solution.
1.) $n-7>2$
2.) $x+1<-3$

3.) $60<12 b$
4.) $-5 \geq \frac{t}{3}$

5.) $6<y-3$
6.) $16 d>-64$

7.) $\frac{w}{7}>0$

Solve each problem and JUSTIFY each step.
\#1) $2(x+2)=\frac{9}{2}$
\#2) $0.3 n+4.1=-0.6 n-1.2$
\#3) $\frac{1}{3}\left(\frac{3}{5} w+\frac{12}{10}\right)=\frac{4}{5} w+\frac{1}{10}$
\#4) $0.4(m+0.7)=1.5$

Solve the equation and justify each step.

1. $5+4 x=x+8$
2. $3 z+7=2(z+5)$
3. $-2(6-2 m)=3 m-8+5 m$
4. $3(x-2)-2 x=4 x+9$

Solve the following equations and identify the properties used.

1) $3(d+2)=6$
2) $26=2(m+10)$
3.) $18=2 m+6-5 m$
4.) $2(b-3)-4 b=4$

Use the Distributive Property
\& Combine Like Terms

Name: \qquad
1.) $3-3(x-2)$
2.) $-(1-5 n)-7 n$
3.) $8+7(7 n-4)$
4.) $4 x+5(3 x-3)$
5.) $5-2(8 x+4)$
6.) $1-8 x-5 x$
7.) $7+6 x+9 x+9$
8.) $-3+8 x+2$
9.) $5-8 n-4 n$
10.) $9+3 x+1-2 x$
\qquad

Solve the following 2 step equations and CHECK! Then identify the properties used.
1.) $2 c+5=35$
2.) $\frac{p}{4}+3=15$
3.) $34=14 n-8$
4.) $5 y+16=51$
4.) $-\frac{m}{9}+7=3$
6.) $\frac{n}{4}-3=6$
7.) $-3=-3 k+6$
8.) $-9=-\frac{s}{12}+5$

Name:
Solving one-step equations
You must show your work to get credit. Identify the property you used.

1) $y+9=23$
2) $\frac{x}{4}=16$
3) $-78+z=100$
4) $-8 c=96$
5) $3 n=39$
6) $10=a-15$
7.) $48+b=56$
8.) $\frac{1}{5} x=4$
1.) Determine the set or sets the following numbers belong to:

-3.2	-35	7	0	$\sqrt{8}$	$\frac{3}{5}$	$.23974 \ldots$

Natural:

Whole:

Integer:

Rational:

Irrational:
2.) Which statement is not always true?
(1) The product of two irrational numbers is irrational.
(2) The product of two rational numbers is rational.
(3) The sum of two rational numbers is rational.
(4) The sum of a rational number and an irrational number is irrational.
3.) Given: $L=\sqrt{2}$

$$
M=3 \sqrt{3}
$$

$$
N=\sqrt{16}
$$

$$
P=\sqrt{9}
$$

Which expression results in a rational number?
(1) $L+M$
(3) $N+P$
(2) $M+N$
(4) $P+L$

Identify the property that each example illustrates.

1 Which property is illustrated by the equation $a x+a y=a(x+y)$?

2 Which property of real numbers is illustrated by the equation $-\sqrt{3}+\sqrt{3}=0$?

3 Which property of real numbers is illustrated by the equation $52+(27+36)=(52+27)+36$?

4 If M and A represent integers, $M+A=A+M$ is an example of which property?

5 Which property is illustrated by the equation $\frac{3}{2} x+0=\frac{3}{2} x$?

6 Which property is illustrated by the equation $6+(4+x)=6+(x+4)$?

7 What is the multiplicative inverse of $\frac{3}{4}$?
8. Under which operation is the set of odd integers closed?

1) addition
2) subtraction
3) multiplication
4) division
