Foundations of enath ODODOC 6 BOOBOC

Name

TOb1O Of CODCOMAS

Notes \#61	Intro to Functions	Pg. 1-2
Notes \#62	Eva luating Functions Day 1	Pg. 3-4
Notes \#63	Eva luating Functions Day 2	Pg. 5-6
Notes \#64	Domain and Range	Pg. 7-8
Notes \#65	Interval Notation	Pg. 9-10
Notes \#66	Graphing Linear Functions on an Interval	Pg. 11-13
Notes \#67	Graphing Exponential Functions on an Interval	Pg. 15-16
HW \#67	Homework \#67	Pg. 17
HW \#66	Homework \#66	Pg. 19
HW \#65	Homework \#65	Pg. 21
HW \#64	Homework \#64	Pg. 23
HW \#63	Homework \#63	Pg. 25
HW \#62	Homework \#62	Pg. 27
HW \#61	Homework \#61	Pg. 29

INTRO TO FUNCTIONS

Examples of Functions:

$\{(2,5),(5,2),(0,0)\}$
$\{(-8,-3),(-3,-8),(7,7)\}$

x	-2	0	1	2
y	0	-2	-3	-4

Examples that are NOT Functions:

$\{(2,5),(5,-9),(2,0)\}$
$\{-8,-3,-5,7\}$

\boldsymbol{x}	3	3	2	0
\boldsymbol{y}	1	4	5	-3

Functions pass the \qquad which is when a graph does not \qquad the vertical line more than \qquad .

In your own words, define "function".

Domain:

Range:
\square

Ex 1) Let $x=\{1,2,7,4\}$ and $y=\{5,6,7,8,9\}$. f and g are defined below.

$$
f(x)=\{(1,7),(2,5),(7,6),(4,7) \quad g(x)=\{(1,5),(2,6),(1,8),(2,9),(7,7)\}
$$

a) Is f a function? If yes, what is the domain and range? If no, explain why.
b) Is g a function? If yes, what is the domain and range? If no, explain why.
c) What is $f(2)$?
d) If $f(x)=7$, then what is x ?

Review: Determine if the following are functions. If they are, find the domain and the range.
1.) $\{(2,3),(4,0),(-2,3),(5,1)\}$
2.) $\{(3,-1),(4,6),(7,2),(3,6)\}$

Evaluating:
Just \qquad and \qquad

1. Find the value of each function for the given input.
Let $f(x)=6 x-3$,
let $g(x)=0.5(4)^{x}$, and
let $h(x)=x^{2}-3 x+4$.
a. $\boldsymbol{f}(\mathbf{0})$
e. $\boldsymbol{g}(\mathbf{0})$
i. $h(2)$
b. $f(-10)$
f. $g(-1)$
j. $\quad h(-2)$
c. $f(2)$
g. $g(2)$
k. $\boldsymbol{h}(-\mathbf{4})$
d. $\boldsymbol{f}\left(-\frac{2}{3}\right)$
h. $g\left(\frac{1}{2}\right)$
I. $h\left(\frac{2}{3}\right)$

$$
\text { Let } f(x)=6 x-3 \text { and let } h(x)=x^{2}-3 x+4
$$

m. $f(\mathbf{1})+f(\mathbf{2})$
n. $h(2)+h(1)$
2. Since a variable is a placeholder, we can substitute letters that stand for numbers in for x. Let $f(x)=6 x-3$, and let $g(x)=0.5(4)^{x}$, and suppose a, b, c, and h are real numbers. Evaluate each function for the given input.
a. $f(a)$
c. $g(b)$
b. $f(2 a)$
d. $g(3 b)$
1.) $f(-3)$
2.) $g\left(\frac{1}{2}\right)$
3.) $g(0)$

Since a variable is a placeholder, we can substitute letters that stand for numbers in for x. Let $f(x)=6 x-3$, and let $g(x)=0.5(4)^{x}$, and suppose a, b, c, and h are real numbers. Evaluate each function for the given input.

a. $\boldsymbol{f}(\boldsymbol{a})+\mathbf{f}(\boldsymbol{h})$	b. $\boldsymbol{g}(\boldsymbol{b}-\mathbf{3})$	
c. $\boldsymbol{f}(\boldsymbol{a}+\boldsymbol{h})$	d. $\boldsymbol{g}(\boldsymbol{b}+\boldsymbol{c})$	

e. $\boldsymbol{f}(\boldsymbol{a}+\mathbf{1})-\boldsymbol{f}(\boldsymbol{a})$	f. $\quad f(\boldsymbol{a}+\boldsymbol{h})-\boldsymbol{f}(\boldsymbol{a})$	
g. $f(\mathbf{2}+\boldsymbol{h})-f(\boldsymbol{h})$	h. $g(\boldsymbol{b}+\mathbf{1})-g(\mathbf{b})$	

Let $\boldsymbol{m}(x)=5 x+10$ and $\boldsymbol{k}(x)=-4 x$. Evaluate.
i. $m(2)-k(12)$
j. $m(-7)+k(-2)$

Domain and Range

Review:

What is Domain:

What is Range:

Find the domain and range of the following: $\{(2,5),(4,2),(8,-3),(11,1)\}$

1) Provide a suitable domain and range to complete the definition of each function.
a. Let $f(x)=2 x+3$.
b. Let $C(x)=9 x+130$, where $C(x)$ is the number of calories in a sandwich containing x grams of fat.
c. Let $B(x)=100(2)^{x}$, where $B(x)$ is the number of bacteria at time x hours over the course of one day.
2) Donovan purchased a bag of Flamin' Hot Cheetos. The nutrition on the box stated that a serving of 10 cheetos contains a total of 100 calories. A full bag of Flamin' Hot Cheetos contains 170 calories. What is the domain and the range for the bag?
3) A local DJ business charges $\$ 70$ per hour plus a $\$ 1200$ equipment fee. Find the domain and range over a 5 hour period.
4) A local DJ business charges charges $\$ 280$ dollars per hour. Find the domain and range over a 5 hour period.
\qquad
interval notation

Symbol	Meaning
	\bullet
(Parentheses)	\bullet
	\bullet
	\bullet
$[$	\bullet
$[$ Bracket $\}$	\bullet
	\bullet

$3<x<10$	As an inequality
	In Interval Notation
\longleftrightarrow	

1) Which interval notation represents the set of all numbers from 2 through 7 , inclusive?
a. $(2,7]$
b. $(2,7)$
c. $[2,7)$
d. $[2,7]$
2) Which interval notation represents the set of all numbers greater than or equal to 5 and less than 12 ?
a. $[5,12)$
b. $(5,12]$
c. $(5,12)$
d. $[5,12]$

infinity:

Infinity is not a \qquad it is an \qquad .

It represents something with \qquad .

We use the symbol:
$x \leq 3$

$x>17$

3) In interval notation, the set of all real numbers greater than -4 and less than or equal to 11 is represented by:
4) Give the interval notation that represents the set of all real numbers greater than 2 and less than or equal to 20?
5) The inequality $-2 \leq x<4$ can be written as:
6) Which interval notation represents $-3 \leq x \leq 3$
7) Which set of integers is included in ($-1,3$?
8) Which set of integers is included in $[-5,0]$?
9) Which set of integers is included in $(1,7)$?
10) Which set of integers is included in $[14,25)$?
11) Give the interval notation that represents the set of all numbers from -4 through 8 , exclusive.

Graphing Linear Functions on an Interval

Sketch the graph of the following equation:
$f(x)=2 x-3$

What if we use interval notation?

1) $f(x)=2 x-3 ;[-1,4]$

x		$f(x)$

2) $f(x)=\frac{1}{2} x-2$; $(-3,3)$

x		$f(x)$

3) $f(x)=-3 x+5$; $(-1,5]$

x	$f(x)$

Getting Coordinates with a Calculator

Step 1: Press $Y=$
Step 2: Type in function
Step 3: Press 2nd, press Graph
Step 4: Use the arrows to find your x values.

Step 5: Write them in a table on your paper
4) $f(x)=3 x-2 ;[-2,4]$

5) $f(x)=-\frac{1}{2} x+2 ;[-3,1)$

Graphing Exponential Functions on an Interval

Yesterday we graphed \qquad functions.
We can graph different types of functions in a given interval too.

Exponential functions have the \qquad in the \qquad .

1) Sketch the graph of the following equation and find the domain and range:
$f(x)=2^{x} ;[-1,3]$

Domain: \qquad

Range: \qquad
2) $f(x)=\left(\frac{1}{2}\right)^{x} ;(-2,2)$

Domain: \qquad

Range \qquad

3) $f(x)=\left(\frac{1}{3}\right)^{x}$; $[-2,1)$

Domain: \qquad

Range: \qquad
4) $f(x)=2.5(2)^{x} ;(-1,2]$

Range: \qquad
\qquad

Sketch the graph of the following equation and find the domain and range:
1.) $f(x)=2(2)^{x} ;[-1,2]$

Domain: \qquad

2.) $f(x)=3^{x} ;(-1,2]$

Domain: \qquad

Range: \qquad

Graph the following equations.

1) $f(x)=3 x-2 ;[-2,3]$
2) $f(x)=-3 x+5 ;(-1,4]$

Write each inequality in interval notation.

1. $-3<x<4$
2. $1 \leq x<17$
3. $6 \leq x \leq 7$
4. $x>2$

Write each interval as an inequality.
5. $[5,8]$
6. $(6,18]$

Write the set of integers represented by the inequality/interval.
7. $(2,7]$
8. $5 \leq x<10$

Find the domain and range for the following:
1.) $y=-2 x-7$
(See 1A on notes for assistance)
2.) Let, $C(x)=3 x+14$, where $C(x)$ stands for the number of calories burned while running x hours.
(See 1B on notes for assistance)
3.) Let $M(x)=50(4)^{x}$, where $M(x)$ stands for the population of mold that grows over x days.
(See 1C on notes for assistance)
4.) A parking garage charges $\$ 1.25$ for every hour a car is parked in their lot. The company always charges for the full hour. Find the domain and range over a 6 hour period.

Hours	Money Charged

Evaluate the following: $\quad f(x)=-2 x-7, \quad h(x)=x^{2}-2 x+1$

1) $f(a-2)$
2) $h(-2)$
3) $\boldsymbol{f}(\boldsymbol{a}+\boldsymbol{h})-\boldsymbol{f}(\boldsymbol{a})$
4) $\boldsymbol{h}(\boldsymbol{a})-\boldsymbol{h}(2)$
1. Which set of ordered pairs does not represent a function?
a) $\{(3,-2),(-2,3),(4,-1),(-1,4)\}$
b) $\{(3,-2),(3,-4),(4,-1),(4,-3)\}$
c) $\{(3,-2),(4,-3),(5,-4),(6,-5)\}$
d) $\{(3,-2),(5,-2),(4,-2),(-1,-2)\}$
2. Which relation is a function?
a) $\left\{\left(\frac{3}{4}, 0\right),(0,1),\left(\frac{3}{4}, 2\right)\right\}$
b) $\left\{(-2,2),\left(-\frac{1}{2}, 1\right),(-2,4)\right\}$
c) $\{(-1,4),(0,5),(0,4)\}$
d) $:(2,1),(4,3),(6,5)\}$
3. Given: $\{(2,1),(3,6),(4,-3),(6,-11)\}$, find the domain and range.

Evaluate the following functions for the given values. You must have work.
4. If $f(x)=3 x-4$, find $f(-2)$.
6. If $f(x)=x^{2}+3 x-5$, find the value of $f(3)$.
5. If $f(x)=-3 x+11$, find $f(2)+f(7)$

1) Which set of ordered pairs represents a function?
a. $\{(0,4),(2,4),(2,5)\}$
b. $\{(6,0),(5,0),(4,0)\}$
c. $\{(4,1),(6,2),(6,3),(5,0)\}$
d. $\{(0,4),(1,4),(0,5),(1,5)\}$
2) Which relation is not a function?
a. $\{(1,5),(2,6),(3,6),(4,7)\}$
b. $\{(4,7),(2,1),(-3,6),(3,4)\}$
c. $\{(-1,6),(1,3),(2,5),(1,7)\}$
d. $\{(-1,2),(0,5),(5,0),(2,-1)\}$
3) Which graph represents a function?
a.

c.

b.

d.

4) Given $\{(2,5),(3,0),(6,2),(4,1)\}$ Evaluate $f(3)$
5) Given $\{(2,5),(3,0),(6,2),(4,1)\}$

What is x if $f(x)=2$?
4) Which graph does not represent a function?
a.

b.

c.

d.

