Foundations of Math Chapter 6 Packet

Name

Table of Couteuts

Notes #61	Intro to Functions Pg. 1-2		
Notes #62	Evaluating Functions Day 1	Pg. 3-4	
Notes #63	Evaluating Functions Day 2	Pg. 5-6	
Notes #64	Domain and Range	Pg. 7-8	
Notes #65	Interval Notation	Pg. 9-10	
Notes #66	Graphing Linear Functions on an Interval	Pg. 11-13	
Notes #67	Graphing Exponential Functions on an Interval	Pg. 15-16	
HW #67	Homework #67	Pg. 17	
HW #66	Homework #66	Pg. 19	
HW #65	Homework #65	Pg. 21	
HW #64	Homework #64	Pg. 23	
HW #63	Homework #63	Pg. 25	
HW #62	Homework #62	Pg. 27	
HW #61	Homework #61	Pg. 29	

Name:_____

Notes #61

Examples of Functions:

$$\{(2,5), (5,2), (0,0)\}$$

$$\{(-8, -3), (-3, -8), (7, 7)\}$$

$$\{(2,5), (5,-9), (2,0)\}$$

$$\{-8, -3, -5, 7\}$$

Functions pass the ______ which is when a graph

In your own words, define "function".

Domain:

Range:

Ex 1) Let $x = \{1, 2, 7, 4\}$ and $y = \{5, 6, 7, 8, 9\}$. f and g are defined below.

 $f(x) = \{(1,7), (2,5), (7,6), (4,7) \qquad g(x) = \{(1,5), (2,6), (1,8), (2,9), (7,7)\}$

- a) Is *f* a function? If yes, what is the domain and range? If no, explain why.
- b) Is g a function? If yes, what is the domain and range? If no, explain why.

c) What is f(2)?

d) If f(x) = 7, then what is x?

EVALUATING FUNCTIONS-DAY (

Review: Determine if the following are functions. If they are, find the domain and the range.1.) $\{(2,3), (4,0), (-2,3), (5,1)\}$ 2.) $\{(3,-1), (4,6), (7,2), (3,6)\}$

	Evaluating:	Just		_and	
1.	Find the value of Let $f(x) = 6x - 6x$	f each function for the - 3, let g	e given input. $q(x) = 0.5(4)^x$, and	let $h(x) = x^2$	-3x + 4.
	d. j (U)		e. g (v)	1. <i>I</i> I(2)
	b. <i>f</i> (-10)		f. $g(-1)$	j. h (-	-2)
	c. <i>f</i> (2)		g. g (2)	k. h (-4)
	d. $f\left(-\frac{2}{3}\right)$		h. $g\left(\frac{1}{2}\right)$	I. h	$\left(\frac{2}{3}\right)$

Let
$$f(x) = 6x - 3$$
 and let $h(x) = x^2 - 3x + 4$.

m.
$$f(1) + f(2)$$
 n. $h(2) + h(1)$

2. Since a variable is a placeholder, we can substitute letters that stand for numbers in for x. Let f(x) = 6x - 3, and let $g(x) = 0.5(4)^x$, and suppose a, b, c, and h are real numbers. Evaluate each function for the given input.

a.
$$f(a)$$
 c. $g(b)$

b. *f*(2*a*)

d. g(3b)

Since a variable is a placeholder, we can substitute letters that stand for numbers in for x. Let f(x) = 6x - 3, and let $g(x) = 0.5(4)^x$, and suppose a, b, c, and h are real numbers. Evaluate each function for the given input.

a.	f(a) + f(h)	b. $g(b-3)$
с.	f(a+h)	d. $q(b+c)$
c.	f(a+h)	d. $g(b+c)$
с.	f(a+h)	d. $g(b+c)$
С.	f(a+h)	d. $g(b+c)$
с.	f(a+h)	d. <i>g</i> (<i>b</i> + <i>c</i>)
c.	f(a+h)	d. <i>g</i> (<i>b</i> + <i>c</i>)
с.	f(a+h)	d. <i>g</i> (<i>b</i> + <i>c</i>)

e. $f(a+1) - f(a)$	f. $f(a+h) - f(a)$
g. $f(2+h) - f(h)$	h. $g(b+1) - g(b)$

Let m(x) = 5x + 10 and k(x) = -4x. Evaluate. i. m(2) - k(12)

j. m(-7) + k(-2)

Name:

Domain and Range

Review:

What is Domain:

What is Range:

Find the domain and range of the following: $\{(2, 5), (4, 2), (8, -3), (11, 1)\}$

- 1) Provide a suitable domain and range to complete the definition of each function.
 - a. Let f(x) = 2x + 3.

b. Let C(x) = 9x + 130, where C(x) is the number of calories in a sandwich containing x grams of fat.

c. Let $B(x) = 100(2)^x$, where B(x) is the number of bacteria at time x hours over the course of one day.

2) Donovan purchased a bag of Flamin' Hot Cheetos. The nutrition on the box stated that a serving of 10 cheetos contains a total of 100 calories. A full bag of Flamin' Hot Cheetos contains 170 calories. What is the domain and the range for the bag?

3) A local DJ business charges \$70 per hour plus a \$1200 equipment fee. Find the domain and range over a 5 hour period.

4) A local DJ business charges charges \$280 dollars per hour. Find the domain and range over a 5 hour period.

interval notation

Symbol	Meaning
	•
(•
(Parentheses)	•
	•
	•
]	•
L [Bracket}	•
	•

•		4	
	In Interval Notation	(3,10]	In Interval Notation
3 < <i>x</i> < 10	As an inequality		As an inequality

	As an inequality	$3 \le x \le 10$	As an inequality
[3,10)	In Interval Notation		In Interval Notation
•	•	•	

1) Which interval notation represents the set of all numbers from 2 through 7, inclusive?

a.	(2,7]	С.	[2,7)
b.	(2,7)	d.	[2,7]

- b. (2,7)
- 2) Which interval notation represents the set of all numbers greater than or equal to 5 and less than 12?
 - a. [5,12) c. (5,12) d. [5,12]
 - b. (5,12]

infinity:

Infinity is not a ______, it is an ______.

It represents something with ______.

We use the symbol:

10			
x < 3			

x > 17

- 3) In interval notation, the set of all real numbers greater than -4 and less than or equal to 11 is represented by:
- 4) Give the interval notation that represents the set of all real numbers greater than 2 and less than or equal to 20?
- **5)** The inequality $-2 \le x < 4$ can be written as:
- 6) Which interval notation represents $-3 \le x \le 3$
- 7) Which set of integers is included in (-1, 3]?
- 8) Which set of integers is included in [-5, 0]?
- 9) Which set of integers is included in (1, 7)?
- 10) Which set of integers is included in [14, 25)?
- **11)** Give the interval notation that represents the set of all numbers from -4 through 8, exclusive.

Graphing Linear Functions on an Interval

Sketch the graph of the following equation:

$$f(x) = 2x - 3$$

What if we use interval notation?

1)
$$f(x) = 2x - 3; [-1, 4]$$

2)
$$f(x) = \frac{1}{2}x - 2$$
; (-3,3)

x	<i>f</i> (<i>x</i>)

3) f(x) = -3x + 5; (-1,5]

4)
$$f(x) = 3x - 2; [-2,4]$$

5)
$$f(x) = -\frac{1}{2}x + 2; [-3,1)$$

Caphing Exponential Yesterday we graphed	Functions on an Interval
We can graph different types o	of functions in a given interval too.
Exponential functions have the	in the
1) Sketch the graph of the following equation $f(x) = 2^x$; [-1, 3]	and find the domain and range:
	<
Domain:	
Range:	
	•
$(1)^X$	
$f(x) = \left(\frac{1}{2}\right)^{-1}; (-2,2)$	
Domain:	
_	
Range:	

3)
$$f(x) = \left(\frac{1}{3}\right)^x$$
; [-2,1]

Domain: _____

Range: _____

Domain: _____

4)
$$f(x) = 2.5(2)^x$$
; (-1,2]

2.) $f(x) = 3^x; (-1,2]$

Graph the following equations.

1) f(x) = 3x - 2; [-2,3]

2) f(x) = -3x + 5; (-1, 4]

Write each inequality in interval notation.

- **1.** -3 < x < 4
- **2.** $1 \le x < 17$
- **3.** $6 \le x \le 7$
- **4.** *x* > 2

Write each interval as an inequality.

- **5.** [5,8]
- **6.** (6, 18]

Write the set of integers represented by the inequality/interval.

7. (2,7]

8. 5 ≤ *x* < 10

Find the domain and range for the following:

1.)
$$y = -2x - 7$$

(See 1A on notes for assistance)

2.) Let, C(x) = 3x + 14, where C(x) stands for the number of calories burned while running x hours. (See 1B on notes for assistance)

3.) Let $M(x) = 50(4)^x$, where M(x) stands for the population of mold that grows over x days. (See 1C on notes for assistance)

4.) A parking garage charges \$1.25 for every hour a car is parked in their lot. The company always charges for the full hour. Find the domain and range over a 6 hour period.

(See 4 on notes for assistance)

Hours	Money Charged

Evaluate the following: f(x) = -2x - 7, $h(x) = x^2 - 2x + 1$ 1) f(a-2) 2) h(-2)

3) f(a+h) - f(a)

4) h(a) - h(2)

- 1. Which set of ordered pairs does not represent a function?
 - a) $\{(3,-2), (-2,3), (4,-1), (-1,4)\}$ b) $\{(3,-2), (3,-4), (4,-1), (4,-3)\}$ c) $\{(3,-2), (4,-3), (5,-4), (6,-5)\}$
 - d) $\{(3, -2), (5, -2), (4, -2), (-1, -2)\}$
- **2.** Which relation is a function?

a)
$$\left\{ \left(\frac{3}{4}, 0\right), (0,1), \left(\frac{3}{4}, 2\right) \right\}$$

b) $\left\{ (-2,2), \left(-\frac{1}{2}, 1\right), (-2,4) \right\}$
c) $\left\{ (-1,4), (0,5), (0,4) \right\}$
d) $: (2,1), (4,3), (6,5) \right\}$

3. Given: $\{(2,1), (3,6), (4,-3), (6,-11)\}$, find the domain and range.

Evaluate the following functions for the given values. You must have work.

4. If
$$f(x) = 3x - 4$$
, find f(-2).
6. If $f(x) = x^2 + 3x - 5$, find the value of $f(3)$.

5. If f(x) = -3x + 11, find f(2) + f(7)

- 1) Which set of ordered pairs represents a function?
 - **a.** {(0,4), (2,4), (2,5)} **b.** $\{(6,0), (5,0), (4,0)\}$ **c.** {(4,1), (6,2), (6,3), (5,0)} **d.** $\{(0,4), (1,4), (0,5), (1,5)\}$

- 2) Which relation is *not* a function?
 - **a.** $\{(1,5), (2,6), (3,6), (4,7)\}$
 - **b.** $\{(4,7), (2,1), (-3,6), (3,4)\}$
 - c. $\{(-1,6), (1,3), (2,5), (1,7)\}$
 - **d.** {(-1,2), (0,5), (5,0), (2,-1)}

3) Which graph represents a function?

5) Given {(2,5), (3,0), (6,2), (4,1)} Evaluate f(3)

6) Given {(2, 5), (3, 0), (6, 2), (4,1)}
What is x if
$$f(x) = 2$$
?