Foundations of Math

Chapter 7 Packet

Part 1- Dolynomials

name:

Table of Contents

Notes #68	Adding Polynomials	Pg. 1-2
Notes #69	Notes #69 Subtracting Polynomials	
Notes #70	Exponent Rules	Pg. 5-6
Notes #71	Multiplying Monomials	Pg. 7-8
Notes #72	Multiplying Binomials	Pg. 9-10
Notes #73	otes #73 Multiplying Polynomials	
Notes #74	Notes #74 GCF Practice F	
Notes #75	Factoring out a GCF	Pg. 15-16
Notes #76	DOPS (Difference of Perfect Squares)	Pg. 17-18
HW #76		
HW #75	Homework #75	Pg. 21
HW #74	# 74 Homework #74 Pg .	
HW #73	N #73 Homework #73 Pg .	
HW #72	HW #72 Homework #72	
HW #71	HW #71 Homework #71	
HW #69	HW #69 Homework #69	
HW #68	#68 Homework #68	

Adding Polynomials

Vocabulary:

Monomial -_____

Binomial – _____

Trinomial – ______

Polynomial – ______

Degree – _____

Leading Coefficient-_____

Standard Form – _____

Constant – ______

Like terms – _____

A polynomial is in simplest form when it no longer contains any ________.

Ex) $5x^3 + 8x^2 - 5x^3 + 7 =$

Adding Polynomials: All you have to do is ______!

1) $(6x^2 + 3x + 7) + (2x^2 - 6x - 4)$

2) Find the sum of $(2p^3 + 6p^2 + 10p)$ and $(9p^3 + 11p^2 + 3p)$

3)
$$(b^3 + 6b^2 - b) + (9b^2 - 7b^2 + 3b)$$

4) The sum of
$$3x^2 + x + 8$$
 and $x^2 - 9$ is

5) The sum of
$$3x^2 + 4x - 2$$
 and $x^2 - 5x + 3$ is

6) What is the sum of
$$x^2 - 3x + 7$$
 and $3x^2 + 5x - 9$?

7) The sum of
$$4x^3 + 6x^2 + 2x - 3$$
 and $3x^3 + 3x^2 - 5x - 5$ is

8) What is the sum of
$$-3x^2 - 7x + 9$$
 and $-5x + 6x - 4$?

9) What is the sum of
$$2m^2 + 3m - 4$$
 and $m^2 - 3m - 2$?

SUBTRACTING POLYNOMIALS

Review:

- 1) What is a polynomial?
- 2) The sum of $4x^3 + 6x^2 + 2x 3$ and $3x^3 + 3x^2 5x 5$ is
- 3) What is the sum of $x^2 3x + 7$ and $3x^2 + 5x 9$?

SUBTRACTING POLYNOMIALS:

"Subtracted From"

ex) What is 3 subtracted from 5?

"The Difference of" _____

ex) What is the difference of 10 and 4?

Examples:

1)
$$(3x^2 + 2xy + 7) - (6x^2 - 4xy + 3)$$

1)
$$(3x^2 + 2xy + 7) - (6x^2 - 4xy + 3)$$

2) $(x^2 - 5x - 2) - (-6x^2 - 7x - 3)$

3) When 5x + 4y is subtracted from 5x - 4y, the difference is

4) When $3g^2 - 4g + 2$ is subtracted from $7g^2 + 5g - 1$, the difference is

5) The expression $(2x^2 + 6x + 5) - (6x^2 + 3x + 5)$ is equivalent to

6) When $4x^2 + 7x - 5$ is subtracted from $9x^2 - 2x + 3$, the result is

7) When $3a^2 - 2a + 5$ is subtracted from $a^2 + a - 1$, the result is

8) If $2x^2 - 4x + 6$ is subtracted from $5x^2 + 8x - 2$, the difference is

Exponent Rules

Exponent –

ex) $3^3 =$

ex)
$$(4x^3)^4 =$$

Product Rule –

ex) $x \cdot x^3 =$

$$ex) 5x^2 \cdot 2x^5 =$$

$$ex)(2^3)(2^5) =$$

Power to a Power Rule –

ex) $(3x^5)^2 =$

ex)
$$(2x^3)^5 =$$

Quotient Rule – _____

 $ex)\frac{y^5}{v^2} =$

ex)
$$\frac{8x^{10}}{2x^3}$$

$$ex)\frac{4^8}{4^3} =$$

Rewriting Negative Exponents –

Ex) $\frac{x^2}{x^5} =$

$$ex)\frac{x^{3}}{x^{8}} =$$

ex)
$$\frac{2x^5}{6x^9}$$
 =

Use the laws of exponents to simplify.

1)
$$x^3 \cdot x^4 \cdot x^5 =$$

2)
$$(y^2)^5 =$$

3)
$$(3y^5)2 =$$

4)
$$\frac{-20x^4}{5x} =$$

5)
$$\frac{(x^5)(x^5)}{(x^2)^4} =$$

6)
$$2x^2(7x^7 + 3x^2) =$$

- **7)** What is 2^4 equivalent to?
- 8) What is $(2x)^4$ equivalent to?
 - a) 8*x*

b) $16x^4$

c) $8x^4$

- 9) What is $(3x)(4x^2)$ equivalent to?
 - a) $12x^3$
- b) $12x^2$

c) 7*x*

- **10)** What is 3x(x + 4) equivalent to?

 - a) $3x^2 + 4$ b) $3x^2 + 12x$ c) 3x + 12

- **11)** What is $\frac{27x^8}{3x^2}$ equivalent to?
 - a) $9x^6$

b) $9x^4$

d) $9x^{10}$

Multiplying Monomials

Review:

1.
$$(3n^4)^2$$

2.
$$v^{-3} \cdot v^2 \cdot v^6$$

3.
$$6x^2 \cdot 4x^{10}$$

When multiplying monomials, we will ______ the _____

and then ______ the ______.

For each problem, a) simplify, and b) give the degree, c) the leading coefficient, and d) what it is called:

Example A.
$$-3x^{2}(x^{2} - 3x)$$

Example B.
$$4b(5b^2 - b + 6)$$

1.
$$8m(m+6)$$

2.
$$-4m(-m+2)$$

3.
$$9b^4(2b^4 - 3b + 10)$$

4.
$$-3g^7(g^4-6g^3+5)$$

5.
$$-5w^2(9w^2 - 8w - 5)$$

6.
$$12r(2r^6 - r + 2)$$

7.
$$4(2x^2 + 6x - 5)$$

8.
$$5z(2z^2 - 6z + 3)$$

9.
$$2(7n^2 + 5n + 8)$$

10.
$$5d^3(8d^2 + 2d + 3)$$

11.
$$4k(7k^2 + 6k + 3)$$

12.
$$2g(3g+6)$$

13.
$$8x(3x + 7)$$

14.
$$7p^2(4p^2 + 3p - 3)$$

Multiplying Binomials

Review: Distribute, find the degree, leading coefficient, and type of polynomial: $4x^3(3x^2 + 5x - 7)$

Now let's multiply a binomial by a binomial: (2x + 3)(3x + 4)

In order to multiple binomials together, we have to multiple ______

in the first binomial to ______ term in the second binomial.

This is called _______.

$$(2x + 3)(3x + 4)$$

A neat, simple way to do this is by using the ______.

Multiply the binomials. For each problem, a) simplify, b) give the degree, and c) give the leading coefficient.

1)
$$(4x-2)(x+3)$$

2)
$$(2y-3)(4y-5)$$

3)
$$(x + y)^2$$

4) (2x+1)(4x+3)

5)
$$(6x - 11)(x + 2)$$

6) (d+9)(d-11)

7)
$$(b+8)(2b-5)$$

8) $(x-3)^2$

9)
$$(2x^2+1)(x-1)$$

MULTIPLYING POLYNOMIALS

Review: a) Simplify, b) give the degree, and c) the leading coefficient, and d) what it is called

$$(5x + 7)(2x + 3)$$

Using the _____ we can also multiply ANY types of polynomials! For each problem, a) simplify, b) give the degree, c) the leading coefficient, and d) what it is called:

1)
$$(x+2)(x^2+3x-8)$$

2)
$$(x-3)(x^2-4x+6)$$

3)
$$(x^2 + 3x + 3)(x - 2)$$

4)
$$(3x+4)(x^2-2x-8)$$

5)
$$(a^2 + 3a - 5)(a^2 + 6a + 1)$$

6)
$$(2x^2 - 6x + 3)(x^2 + 5x - 1)$$

7)
$$(x+2)(3x^2-5x+2)$$

Name:_____

GCF Proctice

To find the GCF of monomials, we have to list the _____

of each monomial and _____ the factors that they have in common.

1. Find the GCF of 6 and 15	2. Find the GCF of 18 and 3 3. Find the GCF of 65 and 91
6:	
15:	
4. Find the GCF of 8, 16 and 24	HOW TO QUICKLY FIND THE GCF OF TWO NUMBERS USING YOUR CALCULATOR Step 1: Press MATH
	Step 2: Use the arrows to scroll to the right so that NUM is highlighted
	Step 3: Press the number 9 Step 4: Type in your TWO numbers, with a comma in between.
	Step 5: Press ENTER
To find the GCF, ask yourse	If "What is the number that goes into both
numbers and the	exponent that goes into each variable.
5. Find the GCF of x and x ²	6. Find the GCF of x ³ y ² , yx ² and xy
7. Find the GCF of 6xz and	8. Find the GCF of 18ab³c and 3ba
7. Find the GCF of 6xz and	8. Find the GCF of 18ab3c and 3ba
15x²yz	
	13

9.	Find the GCF of 2xy and 4x	10.	Find the GCF of 4x ² and 24x
	•		
11.	Find the GCF of 9h6k ⁷ of 81h8k ⁵	12.	Find the GCF of 14g ³ f ³ and 49hf ¹⁶ g
' ' '	This the Ger of the or this	12.	This the Ger of 1491 and 4711 g
13.	Find the GCF of 7x ² and 4x ²	14.	Find the GCF of 16x³y² and 4y²x³
13.	rind the GCr of 7x- and 4x-	14.	rind the GCr of 16x-y- and 4y-x-

Factoring out a GCF

Review: Distribute.

3a(2a + 1)

Once you identify the GCF of monomials, you can ______.

Factoring is the exact opposite of ______.

Distributing = ______, so Factoring = ______.

1) $6a^2 + 3a$

Factoring a GCF Steps:

- **1.** Identify the ______.
- **2.** Write the _____ in front of the _____.
- **3.** ______ each term from the question by the ______.
- **4.** Write the answers you get when dividing in the ______ in order. *Don't forget about the +/- signs! They stay in between the terms where they started.
- 2) $10d^4 + 30d^3$

3) $12d^4 + 42d^3 - 18d^2$

4) $16d^4 + 16d$	$\mathbf{5)} 6d^5 + 10d^3 - 21d^2$
6) $20d^5 + 4d^4 - 8d^3$	7) $18d^3 + 12d$
8) 2vm ² – 14vm	9) $24r^3 + 116r^2 - 168r$

Difference of Perfect Squares

Review: Factor a GCF out of the following

1.)
$$3m^4 + 12m^3 - 9m^2$$

2.)
$$4x^2 + 2x$$

Sometimes, if you have _______ terms, if can be factored using a special rule called ______.

We can use ______ when there are _____ terms separated by a ______ sign and all _____ and _____ are _____.

List the Perfect Squares:

1.)
$$x^2 - 9$$

2.)
$$x^2 - 16$$

2.)
$$x^2 + 16$$

4.)
$$m^2 - 25$$

5.)
$$b^2 - 100$$

6.)
$$x^3 - 36$$

7.)
$$4x^2 - 25$$

8.)
$$36 - y^2$$

9.)
$$144a^2 - 16b^2$$

10.)
$$49m^4 - 36n^2$$

11.)
$$81b^2 - 100$$

12.)
$$25m^2 + 4$$

Factor the Difference of Perfect Squares. Choose 4 problems to do. Do all of the problems for Extra Credit.

1.)
$$x^2 - 25$$

2.)
$$x^2 - 49$$

3.)
$$x^2 + 4$$

4.)
$$36 - m^2$$

5.)
$$81a^2 - b^2$$

6.)
$$121m^2 - 9w^2$$

7.)
$$144 - 16m^2$$

8.)
$$64p^4 - 4q^2$$

9.)
$$36h^2 - 100$$

10.)
$$144w^4 - 1$$

11.)
$$81 - b^6$$

12.)
$$100a^2 - 16$$

Find the GCF of the terms and then factor it out.

1.)
$$3x + 3$$

2.)
$$x^2 - x$$

3.)
$$36t^4 + 24t^2$$

4.)
$$9x^4 + 6x^3 + 18x^2$$

Find the GCF of each pair of monomials

1) 5x and $15x^3$

2) 4xy and $6x^2y^2$

3) $10x^5yz$ and $20x^4y^2z$

Multiply the polynomials using the Box Method.

1)
$$(x-1)(x^3+6x^2-5)$$

2)
$$(2x^2 + 10x + 1)(x^2 + x + 1)$$

Multiply the binomials using the Box Method. Write you answer in Standard Form.

1.
$$(4n+1)(2n+6)$$

2.
$$(x-3)(6x-3)$$

For each problem, a) simplify into standard form, b) give the degree, and c) give the leading coefficient

1)
$$3r(7r - 8)$$

2)
$$10a(a^2 - 10a)$$

Degree: Degree:

Leading Coefficient: Leading Coefficient:

3)
$$3n(n^2-6n+5)$$

4)
$$2k^3(2k^2+5k-4)$$

Degree: Degree:

Leading Coefficient: Leading Coefficient:

Simplify. Write you answer in Standard Form.

1)
$$(3x^2 - 2x + 1) - (2x^2 + 7x + 5)$$

2)
$$(-2x^2 + 4x + 2) - (x^2 + 6x - 4)$$

3) If
$$2x^2 - x + 6$$
 is subtracted from $x^2 + 3x - 2$, the result is

4) When $3a^2 - 7a + 6$ is subtracted from $4a^2 - 3a + 4$, the result is

Simplify. Write your answer in standard form.

1) What is the sum of
$$-3x^2 - 7x + 9$$
 and $-5x^2 + 6x - 4$?

2) The sum of
$$3x^2 + 5x - 6$$
 and $-x^2 + 3x + 9$ is

3)
$$(x^2 + y^2 + 8) + (4x^2 - 2y^2 - 9)$$

4)
$$(4x-7)+(x+5y+1)$$